Preliminary communication

Preparation and characterization of ethyl 3-(bromomercuri)perfluorobutanoate

YUNG K. KIM and OGDEN R. PIERCE

Fluorine Research Laboratories, Dow Corning Corporation, Midland, Michigan 48640 (U.S.A.) (Received July 28th, 1969)

A variety of perfluoroalkyl iodides has been coupled via C–I as the reactive center¹ and has also been converted to the corresponding mercuric iodide by reacting the iodide with mercury². However, only recently the successful coupling of perfluoroalkyl bromides via C–Br as the reactive center has been reported³. No direct formation of a perfluoroalkylmercuric bromide from the reaction of a perfluoroalkyl bromide with mercury has yet been described. The perfluoroalkylmercuric bromides recorded were obtained indirectly as shown in eqn.1.²

$$R_{f}I \xrightarrow{Hg} R_{f}HgI \xrightarrow{AgOH} R_{f}HgOH \xrightarrow{HBr (aq.)} R_{f}HgBr$$
(1)
(R_f = CF₃ and C₂F₅)

A perfluoroalkylmercuric halide containing a functional group on the organic portion of the molecule has not been documented. We now wish to report that when ethyl 3-bromoperfluorobutanoate (I)⁴ was treated with an excess of mercury in a sealed tube at *ca.* 180° or under a vigorous reflux while shaking or stirring, a novel and potentially useful intermediate, ethyl 3-(bromomercuri)perfluorobutanoate (II), b.p. 83–84° (0.7 mm), $n_{\rm D}^{25}$ 1.4615, was formed in 50–60% yield based on the unrecovered starting material (eqn.2)^{*}.

BrCFCF₂COOC₂H₅ + Hg
$$\xrightarrow{\Delta}$$
 BrHgCFCF₂COOC₂H₅ (2)
 $\stackrel{l}{\downarrow}$
 CF_3 CF_3 (1) (II)

The bromide II could be distilled and analyzed for purity by gas chromatography without any noticeable decomposition.

The elemental analysis is in agreement with the formula $BrC_6H_5F_6O_2Hg$ (Found: C, 14.72; H, 1.18; Br, 16.1. Calcd.: C, 14.31, H, 1.00; Br, 15.87.) The infrared and proton resonance spectra confirm the presence of a carbethoxy function, and the ¹⁹F resonance spectrum is consistent with the assigned structure II. The spectrum is comprised of signals

J. Organometal. Chem., 19 (1969) P11-P12

^{*}In the presence of ultraviolet irradiation, the diester, $C_2H_5OOCCF_2CF(CF_3)(CF_3)CFCF_2COOC_2H_5$, was formed as a major product at 25° ³.

centered at δ +68.99 (3F), +110.26 (1F), +113.58 (1F), and +188.54 ppm (1F) relative to CCl₃F. When II was heated at 120° with an excess of bromine, the original ester I and mercuric bromide were formed, and the isolated yields were greater than 85%. This regeneration of the original ester I does not only support the assigned structure II but also suggests that other derivatives of 3-substituted perfluorobutanoate, which would otherwise be difficult to prepare, could be obtained by the use of II.

REFERENCES

- (a) M. Hauptschein, M. Braid and F.E. Lawlor, J. Amer. Chem. Soc., 79 (1957) 6248; (b) W.T. Miller, E. Bergman and A.H. Fainberg, *ibid.*, 79 (1957) 4159; (c) R.D. Chambers, W.K.R. Musgrave and J. Savory, J. Chem. Soc., (1962) 1995.
- 2 (a) H.J. Emeléus and R.N. Haszeldine, J. Chem. Soc., (1949) 2948; (b) J. Banus, H.J. Emeléus and R.N. Haszeldine, *ibid.*, (1950) 3041; (c) H.J. Emeléus and J.J. Lagowski, *ibid.*, (1959) 1497.
- 3 Y.K. Kim and O.R. Pierce, J. Org. Chem., 33 (1968) 442.
- 4 Y.K. Kim, J. Org. Chem., 32 (1967) 3673.

J. Organometal. Chem., 19 (1969) P11-P12